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a b s t r a c t 

Background and Objective: Daily activities such as shopping and navigating indoors are challenging prob- 

lems for people with visual impairment. Researchers tried to find different solutions to help people with 

visual impairment navigate indoors and outdoors. 

Methods: We applied deep learning to help visually impaired people navigate indoors using markers. 

We propose a system to help them detect markers and navigate indoors using an improved Tiny-YOLOv3 

model. A dataset was created by collecting marker images from recorded videos and augmenting them 

using image processing techniques such as rotation transformation, brightness, and blur processing. After 

training and validating this model, the performance was tested on a testing dataset and on real videos. 

Results: The contributions of this paper are: (1) We developed a navigation system to help people 

with visual impairment navigate indoors using markers; (2) We implemented and tested a deep learn- 

ing model to detect Aruco markers in different challenging situations using Tiny-YOLOv3; (3) We imple- 

mented and compared several modified versions of the original model to improve detection accuracy. The 

modified Tiny-YOLOv3 model achieved an accuracy of 99.31% in challenging conditions and the original 

model achieved an accuracy of 96.11 %. 

Conclusion: The training and testing results show that the improved Tiny-YOLOv3 models are superior to 

the original model. 

© 2021 The Author(s). Published by Elsevier B.V. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

People with visual impairment (PVI) suffer while performing 

veryday activities such as navigating indoors or outdoors, identi- 

ying objects, avoiding obstacles [ 1 , 2 ] and shopping [3] . Therefore,

eveloping new solutions is very important to help PVI do these 

ctivities easily and efficiently and motivate them to interact with 

he social environment [ 4 , 5 ]. Global positioning systems (GPS) are 

sed to solve the problem of navigating outdoors. GPS uses geo- 

tationary satellite signals with an accuracy of up to several me- 

ers, sufficient for outdoor navigation. However, indoor navigation 

s still a big problem that needs an accurate and reliable solution. 

or example, in a tall building, GPS cannot be used to automati- 
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ally determine which floor the user is currently on. Furthermore, 

he satellite signals are attenuated and scattered in tunnels or un- 

erground and by roofs, walls and other objects [ 6 , 7 ]. Researches

ave helped PVI navigate indoors and identify objects through us- 

ng Computer Vision (CV) [8–10] . A typical CV navigation system 

ses unique installed tags such as Augmented Reality (AR) mark- 

rs to help in navigating indoors and recognizing objects [11–13] . 

t consists of tags installed in place, a database to store tag infor- 

ation, a camera to capture real-time pictures, a processing unit 

o execute the used techniques, and a two-way communication be- 

ween the system and PVI to take the input and give feedback to 

elp them reach their destination [ 14 , 15 ]. However, the used mark- 

rs cannot be identified in many real-life situations due to motion 

lur or distortion, poor lighting conditions, or too high distances 

rom the camera [16] . 

In recent years, machine learning algorithms have been used 

n the field of CV to improve object detection software. The deep 
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Fig. 1. Sample of different square markers. 
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onvolutional neural network increases the network levels, which 

akes the network have stronger detection capabilities. Deep 

earning algorithms for detection can be divided into two cate- 

ories: two-stage and one-stage. Region-based Convolutional Neu- 

al Networks (R-CNNs) [17] , Fast R-CNNs [18] , and Faster R-CNNs 

19] are two-stage algorithms that use a region proposal network 

o generate regions of interests in the first stage and propagate 

he region proposals down the pipeline for object classification and 

ounding-box regression. R-CNNs predict object locations using re- 

ion proposal algorithms. Features are extracted from each candi- 

ate region, fed into CNNs, and finally evaluated by Support Vector 

achines (SVMs). R-CNN increases the target detection accuracy, 

ut the efficiency is very low. Faster R-CNN uses the region pro- 

osal network method to detect the region of interest in the image. 

hen, it uses a classifier to classify these regions of interest called 

ounding boxes. Faster R-CNN improves the detection accuracy, but 

he detection speed is slow, which is not suitable for real-time ap- 

lications with high image resolution. 

On the other hand, single-stage detectors such as You Only Look 

nce (YOLO) [20] and Single Shot Detector (SSD) [21] were pro- 

osed to improve the detection efficiency to be suitable for real- 

ime applications by treating object detection as a simple regres- 

ion problem. They take an input image and learn the class prob- 

bilities and bounding box coordinates. Such models reach lower 

ccuracy rates but are much faster than two-stage object detectors 

22] . YOLO is a CNN specifically designed for making object detec- 

ion fast, accurate, and suitable for real-time usage. It uses a single 

onvolutional neural network to predict object categories and find 

heir locations [20] . Several versions of the YOLO model were pro- 

osed to improve the accuracy without notable effects on speed. 

OLOv2 is an improvement of YOLO using higher-resolution fea- 

ure maps that help the network detect objects of different scales. 

t also has an added batch normalization on each convolutional 

ayer. Bounding boxes are being predicted by using anchor boxes 

23] . YOLOv3 improves previous YOLO versions by using multi- 

cale detection, a more powerful feature extractor network, and 

ome modifications in the loss function, which allows detecting big 

nd small targets [24] . 

We choose YOLOv3 because it can balance the performance 

n accuracy and processing time well; however, the execution 

ime needs to be improved when using it for real-time applica- 

ions, especially on smartphones. Tiny-YOLOv3 simplified the orig- 

nal YOLOv3 model by reducing the number of the convolutional 

ayers to be suitable for real-time applications without losing much 

ccuracy. 

This paper proposes a system to help PVI navigate indoors using 

mproved versions of the Tiny-YOLOv3 model to improve the de- 

ection accuracy of the original model. In this system, Aruco mark- 

rs are installed at the interest points. When markers are detected 

uring navigation, voice feedbacks are given to guide PVI safely to 

heir destination. The main contributions of this article are the fol- 

owing: 

• Design of a navigation system to help PVI navigate indoors from 

any location inside the building to their destination using mark- 

ers. 
• Proposal of a novel model to improve detecting markers in dif- 

ferent challenging situations based on Tiny-YOLOv3. 
• Several modified versions of the original model were imple- 

mented and compared to improve detection accuracy. These 

models were tested using real test cases. They provided high 

accuracy and very good performance in detecting markers. 

The subsequent parts of this article are structured in the follow- 

ng way. Section 2 reviews the relevant works related to navigation 

ystems using markers and deep learning techniques. Section 3 ex- 

lains the design of the navigation system, the original Tiny- 
2 
OLOv3, and modified versions. Section 4 presents the experimen- 

ation carried out and discusses their results. Section 5 draws con- 

lusion and suggests some ideas for future work. 

. Related work 

In recent years, significant progress was made in the use of 

eep learning and CV in medical research, such as biomedical im- 

ges [25] , cancer prediction [ 26 , 27 ], object detection [28] , and ob-

ect recognition [29] . Smartphones have become very important 

ecause they have various capabilities including processing power, 

ntegrated cameras, and various sensors. These emerging and ma- 

uring technologies and smartphone capabilities allow researchers 

o construct new applications to help PVI identify objects [ 8 , 30 ]

nd safely navigate indoors [ 31 , 32 ]. Researchers aim to improve the 

uality of these applications by increasing accuracy and minimiz- 

ng execution time to be suitable for real-time use. In this section, 

e present some of the common navigation systems using markers 

nd deep learning. 

.1. Square markers 

Square markers are square-shaped tags with a thick black bor- 

er and inner region to represent a code. As shown in Fig. 1 , the

nner region contains pictures or binary codes represented as grids 

f black and white regions. In this article, Aruco markers have been 

sed as tags in our system [13] . 

Al-Khalifa and Al-Razgan proposed an indoor navigation sys- 

em for PVI using a smartphone and Google Glass [14] . It used 

 map constructed with a graph to represent interest points and 

he distances between them. Quick Response (QR) codes are gen- 

rated and installed for each interest point. To navigate, it finds 

he shortest path from the current position to the destination and 

rovides PVI with feedback during navigation. This system used 

oogle glasses to detect QR codes which facilitate navigation with- 

ut using hands to hold the smartphone. However, it fails to iden- 

ify QR codes in different situations. To work, it needs to download 

he building maps using a stable internet connection. 

Ko and Kim proposed a system to help PVI navigate in unknown 

nvironments using QR codes [33] . Location changes during navi- 

ation are continuously computed and given to PVI using text to 

peech. This system records the paths used by PVI during naviga- 

ion to help them navigate easily during their return journey using 

he same routes. This system combines different types of feedback 

uch as tactile or voice commands to minimize navigation errors. 

t also uses colored QR codes to make identifying them easy. How- 

ver, it fails to detect QR codes in challenging situations such as 

otion blurring effects and long distances. 

Torrado et al. proposed a system for helping PVI navigate un- 

nown and complex environments [34] . The system uses a smart- 

hone application to detect QR codes distributed across the floor. 

t calculates the distance to these QR codes and guides PVI to their 

estination. However, it is hard for PVI to capture real-time photos 

ith their smartphone camera. 

Elgendy et al. developed a system to help PVI in indoor navi- 

ation using markers [35] . In this system, markers were installed 
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t the main interest points inside a university. After the PVI se- 

ects the initial and destination points, the system finds the short- 

st path to that destination and gives continuous navigation feed- 

acks to reach it. However, it fails to detect markers in challenging 

ituations such as motion blurring effects. 

Delfa et al. proposed a system for indoor navigation using Blue- 

ooth and a smartphone camera [ 36 , 37 ]. It gave a low-level accu-

acy position estimation using Bluetooth while increasing the ac- 

uracy by using the smartphone’s camera to detect visual tags in 

eal-time. This system used markers to estimate the PVI position 

nd navigate to the destination. It used markers with a color dif- 

erent from the floor to enhance speed and efficiency. However, the 

ystem fails to detect markers from a long distance and cannot de- 

ect various markers at the same time. 

Khan et al. developed a generic system for navigation using AR- 

oolKit markers [38] . It used a smartphone’s camera to recognize 

arkers placed on the ceiling of the building. The user selects their 

estination and then the application determines the shortest path 

o the destination based on the first nearest marker. Audio feed- 

ack is given to guide PVI to reach their final point. However, this 

ystem also faces some limitations. It is difficult for PVI, who are 

olding the smartphone to point the camera, to detect markers on 

he ceiling of buildings. Finally, the system is tested only by blind- 

olded people. 

Fusco et al. proposed an indoor localization approach to facil- 

tate wayfinding by using a combination of computer vision and 

ead reckoning techniques [39] . It used markers to estimate the 

VI’s location and dead reckoning to track PVI movements when 

o markers are visible. However, the system is implemented as 

 logging system and is not suitable for real-time usage. Further- 

ore, the accuracy of marker recognition needed to be improved 

s they can be identified only in a small fraction of video frames. 

he system failed to detect markers if there is any motion blur or 

apid walking speed. 

Lee et al. proposed an indoor navigation system using mark- 

rs and augmented reality [40] . It performs hybrid localization by 

sing marker images as well as Inertial Measurement Unit (IMU) 

ata from smartphones. First, an indoor map is prepared to reg- 

ster the positions for indoor places. Then, markers are generated 

nd printed for these registered places. The navigation system is 

sed to help users successfully reach their destinations. However, 

t cannot detect markers in a crowded environment, as the markers 

re installed on the floor. Furthermore, it failed to identify markers 

rom long distances. 

In addition to marker-based positioning for PVI, various studies 

sing markers have also been conducted in robotics. Zhang et al. 

roposed a system using QR codes to localize a mobile robot and 

llow it to easily navigate [41] . A camera is attached to the robot

o identify QR codes installed on the ceiling. These codes are used 

o identify the robot location and the shortest path to the desti- 

ation is calculated using Dijkstra’s algorithm. Based on the de- 

ected QR codes, the robot can navigate to the destination. The ex- 

erimental results showed that the proposed method was effective 

nd allowed the robot to navigate in indoor environments. How- 

ver, square markers are more accurate than QR codes as they can 

e detected from a longer distance than a QR code. This system is 

ard for PVI to use as they need to point the camera to the ceiling.

i et al. proposed an indoor positioning system for mobile robots 

ut they used a newly designed marker instead of QR codes [42] . 

.2. Deep Learning 

Dash et al. proposed an Augmented Reality (AR) system to help 

hildren learn alphabets [43] . The system used a CNN model to 

etect markers presented in a scene. Then, virtual objects are ren- 

ered on the top of the detected markers. To render them cor- 
3 
ectly, they should put them in front of the camera with the cor- 

ect position and orientation. This system achieved high accuracy 

n marker identification. However, it fails to detect markers from a 

ong distance. 

Elgendy et al. proposed a system to help PVI in indoor naviga- 

ion using markers [16] . The identification step was redefined as 

 classification problem, and a CNN is used to identify markers. 

everal CV techniques are used to select candidates, and then they 

re fed to a CNN model to classify if they are markers or not. The

ystem helps PVI navigate indoors using markers. It achieved high 

ccuracy. The use of CV techniques to select the candidate markers 

akes processing time which needs to be minimized. 

Mekhalfi et al. proposed a navigation system using computer- 

ision technologies [44] . It included a speech recognition module 

o receive instructions and give voice feedback to PVI. A laser sen- 

or was used to calculate the distance from obstacles. A set of 

arkers and an IMU sensor were used to determine PVI location, 

nd a path planning module was used to calculate a safe path for 

he user to walk through. They used a portable camera to capture 

he scene and forward the shots to the navigation or the recogni- 

ion units. However, the size and weight of the processing unit is a 

ig problem as PVI cannot wear it for a long time – a disadvantage 

ompared to using a smartphone. The average processing time for 

ecognition also needed to be minimized. Lastly, obstacle detection 

ensors are expensive and not available for common people. 

Bazi et al. proposed a navigation system to help PVI recognize 

ultiple objects in images using a multi-label convolutional SVM 

45] . It uses a portable camera mounted on a lightweight shield 

orn by the user to capture images and send it via a USB wire to

 laptop processing unit. To identify objects, a set of linear SVMs 

ere used as a filter in each convolutional layer to generate a new 

et of feature maps. Finally, the outputs are fed again to a linear 

VM classifier for carrying out the classification task. However, the 

ize and weight of the processing unit is again a big problem for 

VI. Also, it failed to detect markers from longer distances. 

Kayukawa et al. proposed a collision-avoidance system for PVI 

sing a camera that is integrated into the suitcase [46] . It used 

epth images to determine the risk of collision with a blind per- 

on using a CNN model for detecting objects while YOLOv2 is used 

o detect pedestrians using the RGB streams. This system detects 

ndividuals efficiently. However, the execution time needed to be 

inimized for real-time usage. 

The main objective in [47] is to develop a detection method for 

mall objects based on YOLOv3. The darknet CNN structure was 

odified by increasing the convolutional operation in the begin- 

ing to improve performance. The proposed method improved the 

erformance of detecting small objects. However, it is not suitable 

or real-time usage by smartphones. 

Tapu et al. proposed a navigational assistant prototype to in- 

rease the mobility and safety of PVI [6] . It used CV algorithms 

nd deep CNN to detect, track, and recognize objects in real-time. 

t modified the YOLO algorithm by adding an object tracking pro- 

edure to impute missing information where YOLO is failing. It also 

ntroduced a detection and handling strategy to handle object oc- 

lusion and object movement or camera drift. The proposed system 

an process information from the environment and give feedback 

o PVI to avoid possible collisions. However, it is hard for PVI to 

arry this system on the back for a long time. 

. Proposed methodology 

As navigating inside buildings have many obstacles, markers 

an be used to identify the exact location of PVI and allow them to 

avigate to their destinations. This paper proposes a system to help 

VI navigate indoors using deep learning and markers. First, the 

uilding is configured by installing markers at the interest points 
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Fig. 2. System architecture that PVI should follow to reach the destination point. 
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uch as laboratory and lecture rooms. Then, an internal map is cre- 

ted using a graph to save the interest points and the relation be- 

ween them. Nodes in this graph represent interest points while 

dges are used to connect between these nodes. After configur- 

ng the environment and building the internal map, PVI can use it 

y following the architecture shown in Fig. 2 to reach the destina- 

ion point. The main parts of this prototype are 1. How to identify 

arkers to find PVI’s location. 2. How to navigate from the starting 

oint to the destination using the markers. 

.1. Navigation system 

The main steps for using a navigation system for indoor navi- 

ation are summarized as follows: (1) the building should be well 

repared for PVI by installing markers at the main interest points; 

2) a map should be built to connect these points; (3) navigation 

ommands help PVI to move from their current position and suc- 

essfully reach their destination. 

.1.1. Marker Selection 

Multiple solutions have been developed to help PVI navigate in- 

oors. These solutions are divided into three categories: Tag-Based 

ystems, Computer Vision-Based Systems, and Hybrid Systems. We 

ave already conducted a literature review to select which tech- 

ology is the best for our system [3] . Based on the evaluation of

he available technologies, we have concentrated on CV tag-based 

echniques. There are a lot of tags to choose from, but square 

arkers are the most popular as they provide four correspondence 

oints, which are enough to perform camera pose estimation [13] . 

From square markers, we have compared QR codes with Aruco 

arkers by creating two applications to detect markers. The appli- 

ations work as follows. First, it opens the camera to obtain a live 

tream of images. Then, it converts the image to grayscale using 

he open-source computer vision library called OpenCV and sends 

t to the desired library to detect and identify the marker. In the 

rst application, we used QR codes, and an open-source library 

alled Zxing for detecting and identifying markers. In the second 

pplication, we used Aruco markers, and an open-source library 

alled Aruco library for detecting and identifying markers. After 

esting them in different situations, we found that Aruco markers 

an be detected from distances up to 4 meters, while QR codes 

ere only successful up to 2 meters. So, we concluded that Aruco 

arkers are better than QR codes. However, both cannot be de- 

ected in the following challenging conditions: long distances, blur- 
4 
ing effect due to motion, and marker occlusion [35] . We also com- 

ared Aruco markers and another AR marker using deep learning 

odels and found that Aruco markers give better accuracy [16] . 

ased on all these comparisons, we have selected to use Aruco 

arkers for our system [48] . Fig. 3 shows examples of markers 

rom our dataset in different conditions. The first one is the marker 

n normal situation - Fig. 3 a. The second is a marker after applying

ighting conditions to simulate illumination in the environment - 

ig. 3 b. The third is a motion blur due to fast camera movement 

 Fig. 3 c. The fourth image is a motion blur and rotation by 90 de-

ree at the same time - Fig. 3 d. 

.1.2. Map Construction 

Before using the navigation system, a map should be con- 

tructed for each floor in the building by sighted people. They 

hould move inside the building to identify interest points such as 

aboratories and lecture rooms. Then, markers are printed and in- 

talled on the wall at the chosen places. Later, these markers help 

n guiding PVI to navigate inside the building. After that, an admin 

pplication is used to scan each marker and store details about it 

n a Firebase Database. This information includes marker id, floor 

umber, and the name of the interest point like” Laboratory 407”. 

his process is repeated for each floor in the building. Fig. 4 shows 

 blueprint of the fourth floor with interest points marked in red 

ircles. 

After that, a sighted person should explore all the available 

aths from each interest point to the points around it and mea- 

ure the number of steps between them. For example, starting at 

ode 7 in Fig. 4 , a sighted person should count the number of steps

rom it to its neighbor nodes (1, 2, 6 and 8). The number of steps is

ounted at different distances to simulate different persons having 

ifferent step lengths based on their impairment. Then, the aver- 

ge numbers are calculated for them. After that, a virtual map is 

onstructed using a graph to store these points and the relations 

etween them. In this graph, nodes represent interest points, and 

dges represent the connection between them. We use the average 

umber of steps calculated between markers as the graph edges. In 

he above example, four edges are created to connect point 7 with 

he four other points around it. The first one is between points 7 

nd 1, where we store the number of steps on it. The second edge 

s between points 7 and 2, while the third edge connects points 

 with 6. The last edge connects points 7 with 8. This process is 

epeated for all interest points. Fig. 5 shows the constructed graph 

or the blueprint of the fourth floor. 
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Fig. 3. Marker images obtained under challenging conditions. (a) Ideal conditions. (b) Lighting conditions. (c) Motion blur. (d) Rotation with Motion blur. 

Fig. 4. The blueprint of the interest points on the fourth floor of a building. Red circles represent the interest points. 
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Circles represent interest points while edges represent the 

vailable paths between them. In addition to adding graph nodes 

o the Firebase Database, the admin application is used to store 

dges in it. To add this data to the database, a sighted person uses 

he admin application to scan two markers connected by an edge 

o declare it then adds the number of steps in text format. This 

rocess is repeated for all edges in the graph until the Firebase 

atabase contains all nodes, edges, and number of steps for all 

dges that will be used by the navigation commands for PVI. The 

dmin application allows removing existing markers and adding 

ew markers. When PVI install our navigation system for the first 

ime, it downloads the building’s graph from the Firebase Database 
5 
nd stores it in the smartphone’s local database to allow using it 

ithout Internet connection. 

.1.3. Navigation 

The navigation system was designed for ease of use for PVI 

y using an audio interface. With a single tap on any part of the 

creen, the prototype application opens the camera to get a stream 

f frames and converts them into grayscale images. After opening 

he camera, an audio message asks the PVI to move the smart- 

hone left and right to search for any marker using a Text to 

peech (TTS) module. This module is used to give audio feedback 

o the PVI when it is needed. Table 1 lists most of the navigation
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Table 1 

List of the commands used during navigation and feedbacks given by our prototype. 

Type Name Description 

PVI’s voice 

commands 

“Go to” + destination The user orders the prototype to lead them toward the predefined 

destinations. 

“Start” The user orders the prototype to go to the start activity to select the 

start point. 

“Exit” The user orders the prototype to exit. 

Navigation 

instructions 

“Incorrect destination, you should press on the screen and select it 

again”

The prototype informs the user that they should provide another 

destination. 

“Go straight” + number of steps The prototype directs the user to go straight for a number of steps. 

“Turn left”, “Turn right” The prototype directs the user to turn left or right. 

“Use Elevator” The prototype directs the user to use the elevator from one floor to 

another. 

“You have detected your next point, so, you should go straight to 

reach it”

The prototype informs the user that the next point is detected, and 

the user should move to it. 

“You have passed this point successfully” The prototype informs the user that they passed this point 

successfully and have started navigating to the next point. 

“You have reached your destination so, go straight to it” The prototype informs the user that they reached the desired 

destination. 

Fig. 5. A constructed graph for the blueprint. Circles represent interest points while 

edges represent the available paths and the number of steps between them. 
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Fig. 6. The shortest path to destination example using our navigation system. 
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nstructions used by this module. There are two fundamental com- 

onents for a typical TTS model: text analysis and speech synthe- 

is. These components convert symbols like numbers and abbre- 

iations to written words. Then, a speech synthesis converts the 

avigation instructions into sounds which are understood easily by 

he PVI. In this module, Google TTS library is used to convert text 

o speech [49] . If any marker is detected, the system uses it as a

tarting position and then asks the PVI to select the destination 

oint using a voice command as listed in Table 1 . When the PVI

ommunicates with the navigation system using voice command, a 

peech recognizer API is used to convert these commands to text 

sing Natural Language Processing (NLP). NLP algorithms provide 

 way to convert voice commands correctly to text. In this article, 

e used the NLP algorithm found in the Google API. Then, audio 

eedback is given to the PVI confirming whether their command 

as recognized or not. If it is unrecognized, the system asks the 

VI to input the destination again. 

Once the starting point and destination are identified, the pro- 

otype calculates the shortest path from the initial point to the 

estination using Dijkstra’s algorithm and instructs the PVI to start 

alking in the appropriate direction. This returned path is a list of 

arked points that the PVI should go through to reach the des- 

ination [50] . The PVI should follow the navigation commands to 

ove from one point to the next until arriving to their destination. 

hen the PVI reach any point by detecting the marker placed on 

he wall, the prototype gives navigation commands guiding them 

o the next point on the graph. We used the Aruco library to detect 

arkers during navigation and calculate the distance from them to 

he camera. It depends on the size of the markers as seen on the 

aptured images, so camera calibration is needed at first. With the 

ruco library, we can estimate the distance between the positions 

f markers and the camera. If any marker is detected, this library 

as a function that returns two vectors to represent its position. 
6 
he translation vector tells the distances between the marker and 

he origin of the camera coordinate system. The rotation vector de- 

cribes the orientation of it. We also put markers on the wall to be 

een easily from different angles, as shown in Fig. 12 , to minimize 

he drifting error [51] . However, this library fails to detect mark- 

rs under challenging conditions. So, we propose a deep learning 

odel to solve this problem. 

Fig. 6 shows an example to illustrate this process. Suppose the 

VI stands in front of point 7 and wants to go to point 10. PVI taps

he screen that opens the camera and moves the phone around as 

nstructed by the application’s voice command. The system detects 

nd identifies point 7 as starting point and gives voice feedback 

hat the initial point was selected. If more than one marker is de- 

ected simultaneously, the nearest one is selected as starting point 

ased on distance between the phone and the marker. In this ex- 

mple, the PVI selects point 10 by saying “lab 411” to be their des- 

ination using voice commands. Then, the shortest path is calcu- 

ated from point 7 to point 10 and returned as a list. The PVI is

nstructed to follow this list of points and go from point 7 through 

oint 2, 12, 11 and 10 to reach their destination. From point 7, our 

ystem gives PVI navigation feedback to reach the next point (point 

). To reach it successfully, PVI should follow the instruction to de- 

ect the marker installed on the wall. When the marker for point 

 is detected, our application asks PVI to go towards it and gives a 

otification about the distance when needed. To make the system 

ore accurate, it counts the number of steps that the PVI takes by 

alking from one marker to another using smartphone sensors and 

hen compares it with the number of steps stored in the database. 

rom point 2, the same process is repeated to guide PVI to go to 

he next point which is point 12. Then, go to point 11 and finally 

each point 10 which is the final point. When they reach the final 

oint, a message is given to PVI that they successfully arrived at 

heir destination. 
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Fig. 7. Flowchart of the marker detection process. 
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For the navigation system to work accurately, we considered all 

he situations and conditions that PVI may face during navigation. 

e used an android smartphone (HTC desire 826) capturing videos 

t 30 frames per second. This means that the camera takes 30 im- 

ges every second and sends it to our application for processing. 

ost of the images sent in a second have nearly the same scene, so 

f it misses detecting a marker in one frame, it will likely success- 

ully identify it in the next ones. If the PVI finds another marker, 

here are two possibilities. If this marker is in the list of points to 

he destination, the system continues giving navigation commands 

rom this marker to the destination point. However, if this marker 

s not on the list, the system searches for a new shortest path from 

hat new marker to the destination point. If the PVI moves in a 

rong direction, the camera will likely find another marker since 

arkers cover most places inside the building. If the camera fails 

o detect any marker for some time, such as 30 seconds, our ap- 

lication gives feedback to PVI that they are walking in the wrong 

irection. 

.2. Detecting markers using deep learning models 

We found that our system fails to detect markers in challeng- 

ng conditions. So, we investigated improved versions of the Tiny- 

OLOv3 model to solve this problem and improve the detection 

ccuracy of the original model. Our research question is the fol- 

owing: Will this modification in the original Tiny-YOLOv3 model 

mprove the detection accuracy and minimize the execution time? 

or this reason, we used the original Tiny-YOLOv3 model first to 

etect Aruco markers. Then, we modified the model to improve 

eature extraction and detection accuracy. We made the following 

ypotheses: 

H1: The modified versions of the original Tiny-YOLOv3 model 

will improve the detection accuracy. 

H2: The modified versions of the original Tiny-YOLOv3 model 

will lower the execution time. 

With this modified model, detecting markers during navigation 

orks as shown in Fig. 7 and is repeated until the PVI reaches their

estination. After receiving a real-time stream of images and con- 

erting them to grayscale ones, there are two options to detect and 

dentify markers. If any marker is detected using the Aruco library, 

oice feedback is given to the PVI. If it fails to detect markers, 

he image is fed into our deep learning model. A modified Tiny- 

OLOv3 version is used to process the image and return the cor- 

ect id if any marker is detected. However, if it fails to do so, the

odel concludes that no marker is available and continues pro- 

essing the next image. As previously indicated, the mobile camera 

aptures images with 30 fps. Therefore, there is no need to process 

ll these frames while using the deep learning model, as most of 

hem will have the same scene. The proposed model processes one 
7 
rame and skips 5 frames without processing to speed up the de- 

ection algorithm. 

.2.1. Original Tiny-YOLOv3 model 

Tiny-YOLOv3 model is a CNN that accepts images as an input. 

t consists of two main blocks: a feature extractor and detector. 

hen a new image comes in, the feature extractor uses it as an 

nput to extract features embedding at different scales. Then, these 

eatures feed into two branches of the detector to obtain bound- 

ng boxes and class information. The feature extractor hierarchi- 

ally extracts features from pixels coming from the input layer. 

t uses 3 ×3 filters which go throughout the entire structure and 

ax-pooling layers to reduce the dimensions of the input. The de- 

ector uses a 1 ×1 convolutional structure to analyze the produced 

esults to predict the position and class of detected objects in the 

nput image. Fig. 8 shows the original Tiny-YOLOv3 model. Given 

n image to this model, the final output is a list of bounding boxes 

long with the recognized classes. At first, the dimension of in- 

ut images is reduced by a factor called the stride of the network. 

hen, the features are extracted by going through several convolu- 

ional layers, which makes the detection classifications. Finally, the 

utput is given as a feature map, which represents the network 

lass prediction. This output is converted to bounding boxes with 

lass IDs. During training, the original Tiny-YOLOv3 model uses the 

ame loss function used by YOLOv3, which consists of four param- 

ters: (1) position of the prediction frame ( x, y ); (2) the prediction 

rame size ( w, h ); (3) the prediction class ; (4) the prediction confi-

ence . 

The loss function of the original Tiny-YOLOv3 is shown in 

q. (1) : 

oss = 

1 

n 

∑ n 

k =0 
l os s xy + 

1 

n 

∑ n 

k =0 
l os s wh + 

1 

n 

∑ n 

k =0 
l os s class 

+ 

1 

n 

∑ n 

k =0 
los s con f idence (1) 

here n is the total number of targets trained, and the loss func- 

ion for each parameter in this Eq. (1) is calculated as shown in 

he following equations: 

os s xy = ob ject _ mask × ( 2 − w × h ) 

×binary _ cross _ ent ropy (t ru e xy , pre d xy ) (2) 

os s wh = ob ject _ mask × ( 2 − w × h ) 

×0 . 5 × squar e (tru e wh , pr e d wh ) (3) 

os s class = ob ject _ mask × binary _ cross _ entropy 

(tru e class , pre d class ) (4) 

os s con f idence = ob ject _ mask × binary _ cross _ entropy (ob jec t mask , 

pre d mask ) + ( 1 − ob jec t mask ) 

×binary _ cross _ entropy (ob jec t mask , pre d mask ) 

×ignor e mask (5) 

here object_mask is the point of the object; w and h represent the 

rediction box width and height respectively; binary_cross_entropy 

s a binary cross entropy function; square is a function of variance; 

red xy is the predicted position and true xy is the actual target po- 

ition; pred wh is the size of the prediction frame size and true wh 

s the size of actual ground truth box; true class and pred class are 

he actual target class and prediction class respectively; pred mask 

s the predicted object point; ignore mask is related to Intersection 

ver Union (IoU) which is used for measuring the detection accu- 

acy of corresponding objects in the dataset and is calculated using 

q. (6) . If IoU is less than the specified threshold, ignore mask is 0. 

oU = 

TP 

FP + TP + FN 

(6) 
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Fig. 8. The architecture of Tiny-YOLOv3 original model. It takes images with dimension 416 ×416 as an input. It also used layers 15 and 22 to make the final predictions and 

this output is shown in yellow color. 
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here TP represents true positive, FP is the false positive and FN 

eans false negative. 

.2.2. Modified Tiny-YOLOv3 Model 

There are two ways to change the original Tiny-YOLOv3 to im- 

rove the accuracy of detection. The first way is to change the fea- 

ure extraction module by increasing or decreasing the depth of 

he network. The second way is to change the detection module by 

dding more branches to the detector, which generates the bound- 

ng boxes and class information. In this paper, the original Tiny- 

OLOv3 has been modified several times by changing the feature 

xtraction and detection modules to improve the detection accu- 

acy. The results of these modifications are three modified versions 

f the original Tiny-YOLOv3 model. 

A. First version 

In this version, we intended to improve model accuracy by 

hanging the feature extraction module while keeping the detec- 

ion module the same. We increased the depth of the network by 

dding residual network structures between the 4th to 7th layers 

f the original model. The roles of the added layers are to extract 

ore features from the target and reduce information loss. The 

esidual network uses 1 ×1 and 3 ×3 convolutional layers to extract 

eatures. The feature map of the fourth convolutional layer is con- 

atenated with the feature map generated after adding the residual 

tructure. Then, the output is transmitted to the fifth convolutional 

ayer to extract features. This structure is repeated between the 4th 

o 7th layers, as shown in Fig. 9 . The red parts are the added resid-

al network structures to the original Tiny-YOLOv3 model. 
8 
B. Second version 

The input images are down-sampled by the Tiny-YOLOv3 orig- 

nal model until reaching the first detection layer, where the pre- 

iction is performed at the first scale with stride 32 and 13 ×13 

cale. Then, the output of one of the layers is up-sampled by a 

actor of two and concatenated with the output from one of the 

revious layers. The up-sampling is a simple layer with no weights 

hat will double the dimensions of the input and can be used in a 

odel when followed by a traditional convolutional layer. Finally, 

he output is used for prediction on the second scale with stride 16 

nd 26 ×26 scale. This concept is used to build the second modified 

ersion of the Tiny-YOLOv3 model with predictions across three 

ifferent scales instead of two. The model makes detection at fea- 

ure maps of three different sizes using strides 32, 16, 8 on scales 

3 ×13, 26 ×26, and 52 ×52. Fig. 10 shows the architecture of the 

econd modified version of Tiny-YOLOv3 model. The output of the 

onvolutional layer is up-sampled and concatenated with the out- 

ut from the fourth layer. Then, this output is used for the third 

rediction on a 52 ×52 scale with stride 8. This modification en- 

iches high-level features with low-level information that helps to 

earn fine-grained features which are important to detect small ob- 

ects. 

C. Third version 

As explained, the first modified Tiny-YOLOv3 version modifies 

he feature extraction module to improve accuracy. Meanwhile, the 

econd modified version modifies the detection module by adding 

rediction at a third scale. The authors combined the two architec- 



M. Elgendy, C. Sik-Lanyi and A. Kelemen Computer Methods and Programs in Biomedicine 205 (2021) 106112 

Fig. 9. The architecture of the first modified version of Tiny-YOLOv3. It takes images with dimension 416 ×416 as an input. Red parts are the added residual network 

structures to the Tiny-YOLOv3 original model. 
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ures to make the third modified Tiny-YOLOv3 version, as shown in 

ig. 11 . 

. Experiments and discussion 

Our system was evaluated in three steps: First, the navigation 

ystem was evaluated using an HTC Desire 826 smartphone with 

 GB RAM, octa-core CPU and Adreno 405 GPU. Second, the per- 

ormance of the proposed models was evaluated using videos on a 

ELL INSPIRON N5110 computer with Intel Core i7-2630 QM 2.00 

Hz CPU, 6 MB cache, quad-core, and 8 GB RAM. Training our 

arker detection model requires a lot of resources. Therefore, we 

sed Google Colab which leverages the power of free GPU com- 

utation for training our dataset faster. Finally, the model was up- 

oaded and evaluated on the same HTC smartphone. 

.1. Dataset 

In this study, images were collected from the testing environ- 

ent using a smartphone camera. The dataset used twelve classes 

o represent twelve markers for the interest points on the map. 

or each marker, the authors used 60 0 images; 30 0 were captured 

rom long distances between the camera and markers, while the 

ther 300 were taken from short distances. Then, these 600 images 

ere expanded to 7,200 using data augmentation techniques such 

s rotation, blur, and lighting effects to im prove the detection ac- 

uracy of the neural network. To achieve this, the original images 

ere rotated by 90, 180, and 270 degrees. These rotated images 

imulate holding the camera in different angles. After that, images 
9 
ere blurred to simulate real situations such as incorrect focus or 

amera movement. Lastly, several lighting effects were applied to 

imulate differing corridor lightings, as seen in Fig. 12 , which im- 

roved detection accuracy. Including all markers, the result is a to- 

al of 86,400 images, which were divided into 57,600 images for 

raining and 28,800 images for validation and testing. It is desir- 

ble to split the dataset into training, validation, and testing sets 

n a way that preserves the same proportions of examples in each 

lass as observed in the original dataset. Training, validation, and 

esting sets are generally well selected to contain carefully sampled 

ata that spans the various marker classes that the model would 

ace when used in the real world. Finally, manual annotation was 

pplied where bounding boxes were drawn, and categories were 

lassified manually. 

.2. Navigation system 

When selecting the starting and destination point, and during 

avigation, there is continuous communication between the PVI 

nd our system, as shown in Table 1 . In addition, a short introduc- 

ion about how to use the application was given to the participants 

efore using it. PVI have been trained to interact with the applica- 

ion for navigation and to understand the navigation voice com- 

ands. We prepared the testing environment and removed all ob- 

tacles on the way to the destination. We also asked users to hold 

he smartphone by hand at chest level during navigation to make 

ure that the smartphone camera covered the view area in front 

f the PVI to easily identify markers. It is also possible to mount 

he smartphone to the user’s chest for a hands-free option. Users 
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Fig. 10. The architecture of the second modified version of the original Tiny-YOLOv3 which takes images with dimension 416 × 416. It makes detection using strides 32, 16, 

8 on scales 13 × 13, 26 × 26, 52 × 52. 
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sed headphones connected to the smartphone or a smartphone’s 

peaker to receive feedbacks during navigation. Screenshots of the 

esting environment is shown in Fig. 12 . 

Starting from the building entrance on the ground floor, the 

VI selected laboratory number 404 to be the destination point, 

hich is stored on the map as node 4 on floor number four. So, 

he starting point and destination are on different floors. At first, 

he shortest path is calculated from the entrance on the ground 

oor to the ground floor elevator. After reaching the fourth floor 

uccessfully, the shortest walking path between the elevator and 

ab number 404 is calculated. During testing, we discovered some 

roblems: sometimes the PVI failed to understand the feedbacks 

o, we improved the feedback based on the comments of the PVI 

nd found the modified audio feedback to be satisfactory. Other 

roblems were found when: the PVI moved their hands rapidly 

uring navigation, causing the images to be captured with a part 

f it is occluded; sometimes, the PVI cannot detect markers be- 

ause they are moving their hands a lot and markers move out 

f the smartphone’s camera view; markers can be captured with 

ngles which cannot be detected correctly with our current sys- 

em. We improved our environment to tackle these problems by 

nstalling eight markers with the same id at each interest point in- 

w

10 
tead of adding only one, as shown in Fig. 12 . This implementation 

akes detection easier and solved the problem of occlusion and 

ecreased the chance for the markers to be outside of the camera 

iew. It also helps PVI of different heights to easily detect markers. 

owever, solving the problem of detecting markers under occlu- 

ion can be addressed by using deep learning. 

.2.1. Navigation efficiency index 

Navigation efficiency index (NEI) [52] was included to evaluate 

he navigation performance of the systems. NEI is defined as the 

atio of the actually traveled path’s distance to the optimal path’s 

istance between a source and destination. The average NEI is cal- 

ulated on sub-paths, i.e., a part of the path taken by the subject 

hile walking from the beginning to the end of the path as fol- 

ows: 

EI = 

1 

N 

N ∑ 

i =1 

L A ( S i ) 

L O ( S i ) 
(7) 

here N is the number of sub-paths, S i is a sub-path, L A is the

ctual length traveled, and L O is the optimal length of S i . 

We have evaluated the navigated paths using NEI. In this case, 

e had the main path divided into 12 sub-paths. The results are 
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Fig. 11. The network structure of the modified version 3 which takes images with dimension 416 ×416. It makes detection using strides 32, 16, 8 on scales 13 × 13, 26 × 26, 

52 × 52. 
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iven in Fig. 13 . The measured NEI score shows that the usability 

f this system is indeed acceptable in the tested indoor navigation 

cenarios. As shown, the low values happen when there are some 

urns to left or right and there are no markers in these turns. So, 

e will improve it by adding check-point markers at these turns 

o improve navigation. 
t

11 
.3. Model evaluation 

We trained the Tiny-YOLOv3 model, and the three modified 

odels using the created dataset on four steps to train and test 

he proposed models in different parts of the datasets. The first 

tep (Far dataset) was to evaluate the four models using a part of 

he full dataset that contains images captured from long distances. 
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Fig. 12. Screenshots of the testing environment. 

Fig. 13. Mean navigation efficiency index (NEI) versus paths (S). 
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e applied rotation with different angles such as 90, 180, 270 de- 

rees. The second step (Far Challenging) was to evaluate the four 

odels using images captured from long distances with or with- 

ut applying challenging conditions such as blur and lighting ef- 

ects. The third step (Full dataset) is the same as the first step, but 

e used images captured from long and short distances. In the 

ast step (Full Challenging), we used the full dataset which con- 

ains images from long and short distances, rotated images with 

ifferent angles, and images after applying challenging conditions 

ike step two. We used different batch sizes and number of epochs 

nd determined that 60 epochs in batches of size 16 yielded the 

est results. We used a momentum of 0.9, decay of 0.0 0 05, Adam 

ptimization, and a learning rate of 0.001. We found from experts’ 

xperience that these values are the best to be used for this model 

24] . Models fine-tuning usually used a pre-trained model with a 

arge dataset to get common weights and feature representation, 

hen freeze some bottom part for further training on small or in- 

remental data to improve and fasten the training process. So, our 

odels used a transfer training stage from ImageNet pre-trained 

eights. Then, the model was unfrozen after the first 20 epochs 

nd continued training to fine tune. In each epoch, we used 3600 

terations for training and 900 for validation. Furthermore, we cal- 

ulated the training and validation losses. Every 5 epochs, pre- 

ision, recall, F1 score, and mean Average Precision (mAP) were 

alculated to monitor the improvements during training. We used 

ython, TensorFlow, and the Keras framework for implementation. 

o evaluate these models after training, precision, recall, F1 score, 

verage precision (AP), and mAP of the testing sets were calculated, 

s shown in the following subsections. 
12 
.3.1. Loss learning curves 

The loss (misclassification rate) is calculated using the number 

f examples that a model classifies wrong divided by the num- 

er of performed classifications. A good fit is identified by a train- 

ng and validation loss that decreases to a point of stability with 

 minimal gap between the two final loss values. The loss of the 

odel usually is lower on the training dataset than the validation 

ataset. Fig. 14 shows the training and validation loss for the four 

odels using the full dataset in normal and challenging conditions. 

he loss curves are smoothly going down, indicating that our mod- 

ls fit better with training. The validation loss curves are slightly 

ower than the training loss, which indicates good model fit. Based 

n this, we can say that the four models were trained and vali- 

ated well using our dataset. 

.3.2. Precision, Recall, and F1 Score 

The analysis of precision, recall, and F1 score at different IoUs 

s a conventional means of evaluating object detection accuracy. If 

here is no detected box, but there are markers in the image, the 

ase is considered as FN. If the detected bounding box has an IoU 

alue greater than or equal to the predefined threshold, there are 

wo cases. In the first case, when the predicted class is a correct 

arker, the box is considered a TP. In the second case, when the 

redicted class is not a correct marker, the box is considered a FP. 

recision represents the percentage of correct predictions over the 

otal number of predicted bounding boxes. Recall is the ratio of 

orrectly detected boxes to the total number of markers. Precision 

nd recall are used to evaluate the performance of any model. 

recision = 

TP 

TP + FP 

(8) 

ecall = 

TP 

TP + FN 

(9) 

1 = 2 × Precision × Recall 

Precision + Recall 
(10) 

Fig. 15 shows the precision, recall, and F1 score of various Tiny- 

OLOv3 marker detectors at different IoU thresholds for the full 

ataset. Although the graphs of a recall are nearly the same as 

hown in Fig. 15 (b), the precision and F1 score curves of our mod- 

fied Tiny-YOLOv3 version1 is the highest, as shown in (a) and (c) 

f Fig. 15 . It is also shown that the modified Tiny-YOLOv3 version 

 is better than modified Tiny-YOLOv3 version 2 and the original 

iny-YOLOv3. This means that the modified Tiny-YOLOv3 version 1 

nd 3 give better performance than the other two models. 

Fig. 16 shows the results of the Tiny-YOLOv3 models when us- 

ng the full dataset in challenging situations. It shows that Tiny- 

OLOv3 version3 and the Tiny-YOLOv3 version1 had the best pre- 

ision and F1 score curves. 

Table 2 shows the Precision (P), Recall (R) and F1 score at 

oU = 0.5 of the four models. As shown, the results for the first 

odified model gives better accuracy than the other models in 

on-challenging conditions, as it gives a 98.50% F1 score for the Far 

ataset while the original model gives 97.88%. It gives 99.13% for 

he Full dataset, while the original model gives 87.84%. The modi- 

ed version 3 is better than the original model as it gives 97.60% 

1 score for the full dataset. For the dataset in challenging con- 

itions, the modified version 3 is the best as it gives 98.40% for 

he far dataset and 99.31% for the full dataset while the original 

odel gives 96.52% and 96.11% respectively. From Fig. 15 , Fig. 16 , 

nd Table 2 , it is seen that the modified Tiny-YOLOv3 version3 is 

he best choice and gives the best accuracy when used for detect- 

ng markers under challenging conditions. However, the modified 

iny-YOLOv3 version 1 is the best choice in normal conditions. 
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Fig. 14. Training loss and validation loss % versus epoch for the four models using the full dataset in normal and challenging conditions. 
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.3.3. The mAP and AP 

The average precision (AP) is a way to summarize the precision- 

ecall curve into a single value representing the average of all pre- 

isions. The AP is calculated using a loop that goes through all pre- 

isions/recalls, the difference between the current and next recalls 

s calculated and then multiplied by the current precision. In other 
13 
ords, the AP is the weighted sum of precisions at each thresh- 

ld where the weight is the increase in recall. The AP is calculated 

or each class, then it is used to calculate the mAP value for all 

lasses. The mAP is an average AP value for several sets and is used 

or measuring detection accuracy. Fig. 17 shows the mAP curves of 

he four models in normal and challenging situations. It is shown 
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Table 2 

Precision (P), Recall (R) and F1 score at IoU = 0.5 of different models. 

Far dataset Far Challenging Full dataset Full Challenging 

P R F1 P R F1 P R F1 P R F1 

Tiny-YOLOv3 95.84 100 97.88 93.29 99.99 96.52 78.32 99.98 87.84 92.52 100 96.11 

Modified version 1 97.21 99.83 98.50 94.43 99.90 97.09 98.27 100 99.13 98.43 99.96 99.19 

Modified version 2 79.88 99.63 88.67 93.94 99.56 96.66 89.17 100 94.28 85.82 99.96 92.35 

Modified version 3 90.86 99.29 94.89 96.85 100 98.40 95.81 99.47 97.60 98.97 99.97 99.31 

Fig. 15. Graphs for comparing (a) precision, (b) recall and (c) F1 score by different 

Tiny-YOLOv3 marker detector versions according to IoU threshold without challeng- 

ing conditions. 

t

m

s

t

m

a

Fig. 16. Graphs for comparing (a) precision, (b) recall and (c) F1 score by different 

Tiny-YOLOv3 marker detector versions according to IoU threshold in challenging sit- 

uation. 
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hat mAP values for the four models are close to each other. So, 

AP curves are not enough for comparing these models. It is also 

een that the curves became more stable under challenging condi- 

ions than in normal conditions because in challenging conditions 

ore images are used to represent situations such as rotation, blur, 

nd lighting effects. To prove our first hypothesis, fifty sub-datasets 
14 
ere randomly sampled from the original test set, each with 408 

mages. Each model was applied on the 50 sub-datasets, and the 

orresponding AP, Precision, Recall, and F1 score were calculated. 

he p-values for each pair of methods were obtained by using the 

-test. The results are analyzed at the significance level of 0.05, 
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Table 3 

p-value for different t-tests of the original Tiny-YOLOv3 model and different modified versions. 

Modified version 1 Modified version 2 Modified version 3 

One tail Two tails One tail Two tails One tail Two tails 

Original Version 2.86815E-09 5.7363E-09 0.378143864 0.756287728 8.53592E-09 1.70718E-08 

Fig. 17. Comparative graphs for the full dataset in (a) normal situation (b) challeng- 

ing situation by different Tiny-YOLOv3 marker detector versions according to mAP 

value. 
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Fig. 18. Box diagrams which represent the distribution of execution times for run- 

ning the four models. 
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.e., the null hypothesis H null :” there is no significant difference be- 

ween the two methods” is rejected if p-value ≤ 0.05. 

Table 3 shows the results of p-values when comparing the orig- 

nal model with each of the modified versions. We used one and 

wo tailed t-tests. From the results, we conclude that there is a sig- 

ificant difference between the original model, the first, and the 

hird modified versions. We also found that there is no significant 

ifference between the original version and the second modified 

ne. Based on these results, we reject the null hypothesis. We also 

ound that there is no significant difference between the first mod- 

fied version and the third modified one. 

.3.4. Execution time 

In addition to detection accuracy, an important performance in- 

icator of the target detection algorithm is processing speed. We 

ave tested the execution time by running our models in about 15 

ideos. We have calculated the average execution time for the dif- 

erent algorithms. The mean processing time of the original Tiny- 

OLOv3 model is 0.0351s while the average time for the first mod- 

fied version is 0.0294s using the full dataset in challenging sit- 

ations. Furthermore, the average time for the second modified 

ersion is 0.0389s and 0.0323s for the third modified version. It 
15 
s shown that the Tiny-YOLOv3 modified version 1 is the fastest 

odel. The Tiny-YOLOv3 modified version 3 is faster than the orig- 

nal Tiny-YOLOv3 and the second modified version as shown in 

able 4 . Fig. 18 shows the box diagram which represents the dis- 

ribution of execution time for running the four models. As shown, 

he execution time for the first and the third modified versions are 

he best. 

We have also made a t-test for two samples to compare the 

unning time of the original model with every one of the modified 

ersions. We assume that the two samples have equal variances for 

he first test, and we make the second test for the sample mean. 

e assume alpha is 0.05. We state the null hypothesis as H null : 

he two models have the same running time. H alt : the two models 

ave a different running time. The results are shown in Table 5 . 

rom these results, we found that there is a significant difference 

etween the running time of the models. Based on these results, 

e reject null hypothesis. From evaluating the running time, we 

ound that the first or the third modified model are the best to be 

sed in our system. 

Fig. 19 shows the marker detection examples obtained by the 

roposed models and the original Tiny-YOLOv3 model from dif- 

erent distances. The modified versions showed better results than 

hose obtained by the original model where markers were success- 

ully detected at both long and close distances in all cases. 

To answer the research question: we have tested and evaluated 

he original Tiny-YOLOv3 model and the modified version using 

ifferent evaluation metrics. We have run the four models several 

imes with different combinations of configurations like 60 or 100 

pochs and batch sizes of 16 or 32. In each run, we have calcu- 

ated the loss, mean precision, recall and F1-score in each epoch. 

rom these experiments, we found that the first modified version 

howed the best performance in normal situations while the third 

odified version showed the best performance in challenging sit- 

ations. From these results, Figs. 15 and 16 , and our hypothesis 

esting, we accept the first hypothesis H1 and use the first or the 

hird modified versions for our system. To evaluate the second hy- 
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Table 4 

Mean processing times of the original Tiny-YOLOv3 model and the modified models. 

Tiny-YOLOv3 Original Tiny-YOLOv3 Modified V1 Tiny-YOLOv3 Modified V2 Tiny-YOLOv3 Modified V3 

Mean time (s) 0.0351 0.0294 0.0389 0.0323 

Table 5 

p-values for different t-tests of the original Tiny-YOLOv3 model and different modified versions. 

Modified version 1 Modified version 2 Modified version 3 

One tail Two tails One tail Two tails One tail Two tails 

Original 

Version 

Variance 3.10304E-42 6.20608E-42 1.73118E-07 3.46237E-07 4.0966E-15 8.19321E-15 

Mean 5.41361E-30 1.08272E-29 5.00728E-07 1.00146E-06 6.30346E-13 1.26069E-12 

Fig. 19. Screenshots of detected markers from different distances (a) Original Tiny- 

YOLOv3 version (b) Modified Tiny-YOLOv3 versions. 
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othesis H2 , we have executed the original and the modified ver- 

ions and calculated the inference time. It is shown that The Tiny- 

OLOv3 modified version 1 is the fastest model. Also, the Tiny- 

OLOv3 modified version 3 is faster than the original Tiny-YOLOv3 

odel and the second modified version as shown in Fig. 18 and 

able 4 . From these results and from our hypothesis testing, we 

ccept the second hypothesis H2 . 

We have compared our system with the others in the related 

ork, as shown in Table 6 . In the first criterion, most solutions 

sed deep learning to detect objects and avoid obstacles. In our 

ystem, deep learning models are used to detect markers in chal- 

enging conditions. The results give an F1 score of 99% which is ev- 

dence that the modified models are useful and appropriate for this 

roblem. For the second criterion, some solutions used laptops as 

 processing unit which is heavy to carry. We used a smartphone 

or our system as it is easy for PVI to carry, and most of them use
16 
t for daily tasks. For the third criterion, most solutions installed 

R codes or markers in the environment. However, we prefer to 

se Aruco markers as they are more accurate than QR codes, and 

ur system can detect them from longer distances. Other solutions 

id not use any markers and only described the scenes around PVI 

o avoid obstacles. We use an admin application to build our vir- 

ual map in the fourth criterion. Our application constructs and 

pdates map easily. Some solutions used a manual map creation, 

hich has a problem of updating it if required. Other solutions did 

ot use maps and depend on identifying the environment using 

omputer vision techniques. In the fifth criterion, most solutions 

annot detect markers in challenging conditions and from longer 

istances. However, there is a solution that supports identifying 

hem in some challenging situations [43] . However, this solution 

as used for kids, failed to detect markers from long distances, and 

as developed as a desktop application. Furthermore, it used im- 

ge processing techniques to select the candidate markers. These 

echniques take processing time that should be minimized to be 

uitable for real time usage. For the sixth criterion, our system 

nd several others concentrated only on navigation. They assumed 

hat the environment is free of obstacles or can be avoided eas- 

ly using a white cane. Several solutions are used to identify ob- 

ects and avoid obstacles, while others combined them. Identifying 

bjects and avoiding obstacles are serious problems that are asso- 

iated with dangerous situations. Several solutions were tested by 

VI and sighted people in the seventh criterion, while others were 

ested only by PVI. For the last criterion, most of the accuracies 

ere calculated for the objects’ and obstacles’ detection where the 

est one achieved 97%. In Table 6 , we reported the problems found 

n each solution. In summary: 

• Some application installed markers on the ceiling of the build- 

ing which is difficult for PVI to detect. 
• In some applications, markers are installed on the floor which 

cannot be detected in a crowded environment. 
• Using markers is better than QR codes, as they can be detected 

from longer distances. 
• Most applications failed to detect markers from long distances 

and in challenging conditions such as motion blur or rapid 

walking speed. 
• Some applications use image processing techniques to select 

candidate markers from images and send them to classification 

models which takes processing time that should be minimized. 
• Using IMU sensors has an acceptable positioning accuracy for 

only short distances. 
• Some systems in the literature used expensive obstacle detec- 

tion sensors which are not available for common people. 
• Some applications needed a stable Internet connection to 

download the graph of the building from the server. 
• The use of Google Glasses is an additional burden for the user 

and is not available for common people. 
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Table 6 

A comparison of our system with the others in the related work. 

AI Hardware Tags Map Usage 

challenging 

conditions Function 

Indented 

users Accuracy Problems 

No [14] Google Glass 

Smartphone. 

QR Code Automatic No Indoor 

navigation 

Sighted 

PVI 

– It needs Internet connection to download the 

graph of the building from the server. 

Using markers would be better than QR codes 

which can be detected from a long distance. 

The use of Google Glasses is additional 

burden for the user and not available for 

common people. 

[38] Smartphone. Markers Automatic No Indoor 

navigation 

Sighted 

PVI 

– It installed markers on the ceiling of the 

building which is difficult for PVI to detect. 

Installing markers this way lowers the 

aesthetic value of the building. 

The system was tested only by blind folded 

people. 

[40] Smartphone Markers Manually No Indoor 

navigation 

Sighted – Markers are installed on the floor which 

cannot be detected in crowded environment. 

It fails to detect markers from long distance. 

Building maps automatically would be better 

to enable update when needed. 

[39] Smartphone 

IMU 

Markers Manually No Indoor 

navigation 

PVI – Implemented as logging system which is not 

suitable for real time usage. 

The accuracy of markers’ recognition needed 

to be improved as they are only visible and 

recognizable in a small fraction of video 

frames and they cannot be detected in motion 

blur or in rapid walking speed. 

[44] Laptop 

IMU 

Laser sensor 

Portable 

camera 

Markers Manually No Indoor 

navigation 

Objects and 

obstacles 

detection 

PVI – The size and weight of the processing unit is 

cumbersome for PVI to carry on the back for 

a long time. 

The obstacle detection sensor used is 

expensive and not available for common 

people. 

The processing time for recognition system 

should be minimized. 

Object and obstacle detection should be 

improved by using deep learning techniques. 

IMU sensors have an acceptable positioning 

accuracy only for a short distance since it 

suffers from drift error estimation over time. 

Yes [33] Smartphone QR Code Yes No Indoor 

navigation 

Object 

detection. 

PVI 97% Using markers is better than QR codes which 

can be detected from a long distance. 

[16] Smartphone Markers Manually Yes Indoor 

navigation 

PVI 97% Used CV techniques to select the candidate 

markers from images and sends them to 

classification models which takes processing 

time that should be minimized. 

Building maps automatically would be better 

which enables update when needed. 

Using markers would better than QR codes 

which can be detected from a long distance. 

[45] Shield 

laptop 

Markers No No Objects and 

obstacles 

detection 

- PVI 92.90 The size and weight of the processing unit is 

cumbersome for PVI to carry for a long time. 

It fails to detect markers from long distances 

and in challenging conditions. 

Using maps would be more accurate and 

better to help PVI navigation easily. 

[43] Laptop Markers No Yes, Learning 

alphabets 

using AR 

shapes 

Kids 95%. It fails to detect markers from a long distance 

and was designed for kids. 

Implemented as a desktop application. 

Used CV techniques to select the candidate 

markers from images and sends them to 

classification models which takes processing 

time that should be minimized. 

[6] Laptop 

Smartphone 

– – No Objects and 

obstacles 

detection 

PVI 91 %. The size and weight of the processing unit is 

cumbersome for PVI to carry for a long time. 

Our Smartphone Markers Automatic Yes, Indoor 

navigation 

Sighted 

PVI 

99.31%. Integrating orientation sensors to quickly 

warn PVI if they turn in the wrong direction 

would improve accuracy. 

Adding support to detect and avoid obstacles 

would be better. 

17 
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• Some systems were implemented as a logging system, which is 

not suitable for real-time usage. 
• The size and weight of the processing unit of some systems are 

cumbersome for PVI to carry for a long time. 

. Conclusions 

Our goal is to design a real-time marker detection system. For 

hat, we used the Tiny-YOLOv3 model. The architecture has been 

odified several times to increase detection accuracy. Experimen- 

ation results showed that the modified versions improve the de- 

ection accuracy. Moreover, the proposed model can be installed on 

ifferent embedded solutions such as edge computing to improve 

nference time. A navigation system has also been built for PVI us- 

ng markers. This system helped PVI to easily navigate indoors. But, 

efore using it, a map should be constructed for each floor in the 

uilding by sighted people using an admin application. This map is 

 graph where nodes represent the accurate positions of the mark- 

rs and edges are labelled with the number of steps and navigation 

nstructions. PVI select the starting position and destination us- 

ng a mobile camera and voice commands. Then, our system finds 

he shortest path from the initial point to the destination and re- 

urns it as a list of checkpoints that the PVI should walk through 

o arrive to their destination. While walking, continuous feedback 

s given to walk from one point to the next until reaching the des- 

ination. Testing our system showed that it can be easily used by 

VI and blindfolded sighted people. For future work, we plan to in- 

egrate orientation sensors to quickly warn PVI if they turn in the 

rong direction. Also, we will add support to detect and avoid ob- 

tacles. This system will use deep learning models installed on an 

mbedded system to detect and identify obstacles. 
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